Belief-Propagation Decoding of Lattices Using Gaussian Mixtures

نویسندگان

  • Brian M. Kurkoski
  • Justin Dauwels
چکیده

A belief-propagation decoder for low-density lattice codes is given which represents messages explicitly as a mixture of Gaussians functions. The key component is an algorithm for approximating a mixture of several Gaussians with another mixture with a smaller number of Gaussians. This Gaussian mixture reduction algorithm iteratively reduces the number of Gaussians by minimizing the distance between the original mixture and an approximation with one fewer Gaussians. Error rates and noise thresholds of this decoder are compared with those for the previously-proposed decoder which discretely quantizes the messages. The error rates are indistinguishable for dimension 1000 and 10000 lattices, and the Gaussian-mixture decoder has a 0.2 dB loss for dimension 100 lattices. The Gaussian-mixture decoder has a loss of about 0.03 dB in the noise threshold, which is evaluated via Monte Carlo density evolution. Further, the Gaussian-mixture decoder uses far less storage for the messages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some "goodness" properties of LDA lattices

We study some structural properties of Construction-A lattices obtained from low density parity check (LDPC) codes over prime fields. Such lattices are called low density Construction-A (LDA) lattices, and permit low-complexity belief propagation decoding for transmission over Gaussian channels. It has been shown that LDA lattices achieve the capacity of the power constrained additive white Gau...

متن کامل

An analysis of belief propagation on the turbo decoding graph with Gaussian densities

Motivated by its success in decoding turbo codes, we provide an analysis of the belief propagation algorithm on the turbo decoding graph with Gaussian densities. In this context, we are able to show that, under certain conditions, the algorithm converges and that – somewhat surprisingly – though the density generated by belief propagation may differ significantly from the desired posterior dens...

متن کامل

Multiple-Bases Belief-Propagation with Leaking for Decoding of Moderate-Length Block Codes

Short algebraic codes promise low-delay data transmission and good performance results when transmitted over the additive white Gaussian noise (AWGN) channel and decoded by maximum-likelihood (ML) soft-decision decoding. One reason for this is the large minimum distance of these codes. For belief-propagation (BP) decoding, short algebraic codes show suboptimal results due to their high-density ...

متن کامل

Reduced complexity iterative decoding of low-density parity check codes based on belief propagation

In this paper, two simplified versions of the belief propagation algorithm for fast iterative decoding of low-density parity check codes on the additive white Gaussian noise channel are proposed. Both versions are implemented with real additions only, which greatly simplifies the decoding complexity of belief propagation in which products of probabilities have to be computed. Also, these two al...

متن کامل

Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology

Graphical models, such as Bayesian networks and Markov random elds represent statistical dependencies of variables by a graph. Local \belief propagation" rules of the sort proposed by Pearl [20] are guaranteed to converge to the correct posterior probabilities in singly connected graphs. Recently good performance has been obtained by using these same rules on graphs with loops, a method known a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0904.4741  شماره 

صفحات  -

تاریخ انتشار 2009